Telegram Group & Telegram Channel
VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/83
Create:
Last Update:

VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/83

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA